首页 > 投稿专栏 > Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth

文豪 收藏 投稿 点赞 分享
Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth

微信扫码分享

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

JournalofComputationalPhysics202(2005)

181–195

/locate/jcp

Simulationof uidslipat3Dhydrophobicmicrochannel

wallsbythelatticeBoltzmannmethodq

LuodingZhu

a

ba,*,DerekTrethewayb,LindaPetzolda,b,CarlMeinhartbDepartmentofComputerScience,UniversityofCaliforniaSantaBarbara,SantaBarbara,CA93106,USADepartmentofMechanicalandEnvironmentalEngineering,UniversityofCaliforniaSantaBarbara,SantaBarbara,CA93106,USA

Received15September2003;receivedinrevisedform15April2004;accepted5July2004

Availableonline14August2004

Abstract

FluidslipalonghydrophobicmicrochannelwallshasbeenobservedexperimentallybyTrethewayandMeinhart

[Phys.Fluids,14(3)(2002)L9].Inthispaper,weshowhow uidslipcanbemodeledbythelatticeBoltzmannmethodandinvestigateaproposedmechanismfortheapparent uidslip[Phys.Fluids(2003)].Byapplyinganexponentiallydecayinghydrophobicrepulsiveforceof4·10À3dyn/cm3withadecaylengthof6.5nm,ane ective uidslipof9%ofthemainstreamvelocityisobtained.Theresultisconsistentwithexperimentall-PIVdataandwiththeproposedmechanism.

Ó2004ElsevierInc.Allrightsreserved.

Keywords:Fluidslip;Slipboundarycondition;Hydrophobicity;Micro uidic;LatticeBoltzmannmethod

1.Introduction

Inclassical uidmechanics,theassumptionofno-slipatasolidboundaryisusedastheboundarycon-ditionforviscous owsatrigidwalls.However,for owsatmicro-andnanoscales,thisassumptionmaynolongerbeaccurate.Manyresearchershaveinvestigatedthe uidslipphenomenon[3–12,14,21].Choietal.

[3]investigatedexperimentallytheslipe ectsofwater owinhydrophilic/hydrophobicmicrochannelsandfoundthesliplengthtovaryapproximatelylinearlywiththe owshearrate.Lummaetal.[4]measuredthe owpro lenearawallbydouble-focus uorescencecross-correlation;theiranalysisyieldsalargeapparent uidslipatthewall.Hornetal.[5]observedthehydrodynamicslippage,whichwasdeducedfromthin lmq

*ThisworkwassupportedbyNSF/ITRACI-0086061.Correspondingauthor.

E-mailaddress:zhuld@cs.ucsb.edu(L.

Zhu).

0021-9991/$-seefrontmatterÓ2004ElsevierInc.Allrightsreserved.doi:10.1016/j.jcp.2004.07.004

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

182L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

drainagemeasurementsinasolutionofnonadsorbingpolymer.Watanabeetal.[6,7]found uidslipatthewallofahydrophobicduct/pipewithrelativelylargescalegeometry(15·15mm).RuckensteinandRajora

[8]studiedthe uidslipinaglasscapillarywithliquid-repellentsurfaces.Alargeslipwasinferredatthewallfrompressuredropversus owmeasurements.BarratandBocquet[9]predictedcomputationallysig-ni cantslipinnanoporousmedia.Thiswascon rmedexperimentallybyChuraevetal.[10].ZhuandGra-nick[11]studiedexperimentallytheslipinanoscillatingsurfaceforceequipment.Pitetal.[12]investigated uidslipbetweenspinningparalleldisks.ThompsonandTroian[13]simulatedNewtonianliquidsundershear,viamoleculardynamics.Theirresultsuggestedthatthereisanonlinearrelationshipbetweenthemagnitudeofslipandthelocalshearrateatasolidsurface.Foracomprehensivereviewof uidslippageoverhydrophobicsurfaces,see[14]andthereferencestherein.Thehydrophobicityphenomenaarenotwellunderstood.Forreaderswhoareinterestedinhydrophobicity,werefertothefollowingpapersandrefer-encestherein:[15–21].

Recently,TrethewayandMeinhart[1]measuredthevelocitypro lesofdeionizedwater owingthrougha3Dmicrochannelwithacross-sectionof30·300lm.Theyfoundthatwhenthemicrochannelsurfaceishydrophilic(thewallattractswatermolecules),theconventionalassumptionofano-slipbound-aryconditionisvalid.However,whenthemicrochannelsurfaceishydrophobic(thewallrepelswatermol-ecules),asigni cantslip(approximately10%ofthefree-streamvelocity)nearthewallwasmeasured.Thevelocityerrorintheexperimentalmeasurementiswithin2%,andthesliplengtherroriswithin±0.45lm.

Inthispaper,wedescribethenumericalsimulationofthe uidsliponhydrophobicmicrochannelwallsusingthelatticeBoltzmannmethod.Inthe rstpartofourwork,wereportcomputersimulationswiththesinglephase(component)latticeBoltzmannmethod(LBM)for owin3Dmicrochannels,focusingonmodelingoftheslipboundarycondition.Inthesecondpart,weaddressthemechanismof uidslipwiththemultiphase(multicomponent)latticeBoltzmannmethod(theS-Cmodel).Wewanttopointoutthat,inbothcases,weaddressmodelingofthe uidslipgeneratedbyhydrophobicityinwater ow,notthe uidslipgeneratedbyKne ectsforgas ow.

2.Numericalmethods–latticeBoltzmannmethods

ThelatticeBoltzmannmethodisanalternativetotraditionalnumericalmethodsforsolvingincompress-ibleNavier–Stokesequations.Insteadofsolvingforthemacroscopicquantitiesvelocityandpressure(orstreamfunctionandvorticity)directly,LBMdealswiththesingleparticlevelocitydistributionfunctionsf(x,n,t)(xrepresentsthespatialcoordinates,ntheparticlevelocitycomponents,andtisthetimevariable)basedonasimpli edBoltzmannequation.ForapplicationofthelatticeBoltzmannmethodintheareaofmicroscale ows,see[27,40,41].

Inthe rstpartofourwork1wefocusonmodelingtheslipboundaryconditionusinga19-discretevelocitylatticeBoltzmannmodel(D3Q19)[28,29].InthelatticeBoltzmannmethod,thebounce-backschemeisusuallyusedtomodeltheno-slipboundarycondition.(Wenotethatthebounce-backschemecanitselfalsogenerateslip.Ananalysisoftheslipgeneratedbybounce-backforsimple owscanbefoundin[37].Wefoundthat,ona neenoughgrid,theamountofslipcausedbythebounce-backschemealoneisnegligiblecomparedtotheamountobservedinexperiment.Knudsennumberrelatedslipusingthebounce-backschemeformicroscale owcanbefoundin[40,41].)Ithasalsobeensuggestedintheliteraturethatspecularre ectionmaybeusedtomodelaslipboundarycondition.However,thespecularre ectionschemeusedinourworkresultedin100%slipofthe uidonthewalls.Instead,wehaveemployedacom-

Preliminaryresultshavebeenpresentedatthe2002ASMEInternationalMechanicalEngineeringCongress&Exposition,NewOrleans,Louisiana,November,2002.See[25].1

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195183

binationofbounce-backandre ectiontosimulatetheslipboundarycondition.Thus,theslipboundaryconditionismodeledbyassigningaprobabilityofqforbounce-backand1Àqforspecularre ectionwhenaparticlevelocitydistributionfunctionfj(x,t)hitsawall(100%bounce-backifnjisperpendiculartoawall).Byvaryingthevalueofq,di erentslipboundaryconditionsmaybemodeled.Anobviousshortcomingofthisapproachisitslackofpredictabilityoftheamountofslip.AsimilarschemehasbeenusedbySucci[55]tostudyslipmotionat uidsolidinterfaceswithheterogeneouscatalysis.Suchanideawasmentionedin

[34,35],andcanbedatedbackto1867whenMaxwellstudiedthemicroscopicmodelingofthesolidbound-ary[42].Itwasonceusedin[43]totreattheno-slipboundaryconditioninthelatticegasmethod,andhasalsobeenmentionedinthecontextofdirectsimulationMonteCarlo(DSMC)[44].(InDSMC,specularre ectioniscombinedwiththefulldi usioncondition.)Thecombinationofbounce-backandspecularre ectionisdi culttoimplementinacomplexgeometry.Amethodforaddressingthatissuehasbeenpro-posedin[45].

Inthesecondpartofourwork,wemakeuseofthemulticomponentlatticeBoltzmannmethod[49–52]toinvestigateapossiblemechanism[2]forgeneratingtheapparent uidsliponahydrophobicwall.Thegen-eralideaofthemechanismisasfollows.Thewaterusedinthelaboratoryexperimentwasnotdegasedandcontainsasmallamountofabsorbedgas.Thehydrophobicwallmayrepelthewatermoleculeswithinaregionveryclosetothewallbutisneutraltowatervaporandairmolecules.Asaresult,thewaterdensitynearthewallmaydecline,creatingadepletedlayerveryclosetothewall.Thus,athinlayerofwater–air/watervapormixturewithsigni cantlydi erentwaterandair/watervapordensities(comparedtothewell-mixedair–waterunderstandardconditions)mayformintheregionveryneartothewall.Becausetheva-pordensityismuchsmallerthanthatofwater,theaveragedensityofthethinlayerdeclinescomparedtotheaveragemixturedensityelsewhere.Sincethepressuredropbetweentheinletandoutletthatdrivesthe owcanbetreatedasapproximatelyconstantoncross-sectionsoftheinletandoutlet,thethinlayermaymovefasterthantheusuallymixedwater–air(e.g.,inthecaseofahydrophilicwall),whichmayresultinapparentsliponthehydrophobicwall.

Wetestedtheabovepropositionbysimulatingthewater–air/watervaportwo-phasesystemwiththemulticomponentlatticeBoltzmannmethodfor owina3Dhydrophobicmicrochannel.Thehydrophobicwallsweremodeledbyapplyingforcesinaregionveryclosetothewalls.Theseforcesarerepulsivetothewatermolecules,andareneutraltotheair/watervapormoleculedistributionfunctions.Theseforcesexpo-nentiallydecayawayfromthewall.Theinitialwater–airmixtureisassumedtobeuniform.Theinitialden-sityoftheairinthewateriscalculatedunderstandardconditions(at20°Cand1atm).ThemulticomponentlatticeBoltzmannmodelweuseistheS-Cmodel,see[49–52],exceptthatweintroducedtheadditionalhydrophobicwallforcesintotheformulation.Thewallforcetermwasinsertedintotheright-handsideoftheequationswhichareusedtoupdatethevelocitiesforcomputingthenewequilibriumveloc-itydistributions.

Numerousresearchershaveexaminedhydrophobicsurfacesandtherelatedforces.Whilethee ectsofhydrophobicforceshavebeenobserved,theformandmagnitudeofthehydrophobicforceisnotwellunderstood.Asa rstapproximation,wemodeledthehydrophobicforceasasimpleexponentialdecaywithamagnitudeandadecaylength.AsimilarforcefunctionwasexploredbyVinogradova[21].Wesetthemagnitudeanddecaylengthtobeconsistentwithexperimentalobservations.Thedecaylengthisconsistentwiththeexperimentallengthscalesatreducedviscositylayer(5nm)[23,16]ornanobubbles(10–30nm)[22],aswellasthevalueassumedbyVinogradova(decaylength5–10nm)[21].ThemagnitudeisthreeorderssmallerthanthatassumedbyVinogradova[21].

2.1.SinglecomponentlatticeBoltzmannmethod

TheLBMsusedinourworkareinthe rstpartthesinglephaseisothermalLBGKmodel[28,29],andinthesecondpartthemultiphaseS-Cmodel[49,50].

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

184L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

ThelatticeBoltzmannmethodisanumericaltechniquetosolveasimpli edBoltzmannequation–theLBGKmodel[28,29]

ofðx;n;tÞofðx;n;tÞ1þnÁ¼Àðfðx;n;tÞÀf0ðx;n;tÞÞ;ð1Þwheresistherelaxationtimeandf0istheequilibriumdistributionfunction.ThetermÀ(1/s)(fÀf0)isthewell-knownBGKapproximation[30]tothecomplexcollisionoperatorintheBoltzmannequation.Theparticlevelocityspacencanbediscretizedbya nitesetofvelocities,{nj,j=0,1,2,...n}(inourcase,n=19).Letfj(x,t)bethedistributionfunctionfornj.Thenwehave

ofjðx;tÞofjðx;tÞ1þnjÁ¼Àðfjðx;tÞÀfj0ðx;tÞÞ:otoxs

Afterdiscretizationintime,thelatticeBoltzmannequation(LBE)isobtained

1fjðxþnj;tþ1Þ¼fjðx;tÞÀðfjðx;tÞÀfj0ðx;tÞÞ;sð3Þð2Þ

wherethetermÀð1=sÞðfjÀfj0Þrepresentscollision(notethatcollisionisimplicitlyde nedinLBM,incon-trastwithmoleculardynamicsordirectsimulationMonteCarlo).Beginningwiththeinitialequilibriumdistributionandthedistributionattimet=0,whichcanbetakenastheinitialequilibriumdistribution,theone-stepcomputation(fromtimettotimet+1)canbedividedintotwosubsteps:(1)computethecol-lisionandupdatethedistributionattimetbysummingthecollisiontermandthepre-collisiondistribution;

(2)computethedistributionattimet+1bystreamingthepost-collisiondistribution,i.e.thecomputedrighthandsideoftheLBE.ThelatticeBoltzmannequationcanbetreatedasasecondorderdiscretizationbothintimeandspacebythe nitedi erencemethodoftheLBGKequation.Anyhighorderdiscretizationwilllosetheclearphysicalinterpretationmentionedabove.

AnintuitivewaytoseetheconnectionbetweenthelatticeBoltzmannequationandtheLBGKmodelisasfollows.Followingthetheoryofcharacteristicsforhyperbolicpartialdi erentialequations,letn=dx/dt.TheLBGKequationbecomes

dfðx;tÞ1¼Àðfðx;tÞÀf0ðx;tÞÞ:ð4ÞNotethat(4)isanordinarydi erentialequationalongtheparticletrajectoryinspace(x,t),i.e.(4)anODEinaLagrangiancoordinate.Theprojectionofthetrajectoryonspacexisn=dx/dt.Afterreplacingthetotalderivativein(4)bya nitedi erence(forwardEulermethod),notingthatthediscretizationisdoneinaLagrangiancoordinatesystemandthatdtcanbeabsorbedbys,theLBE(3)isrecovered.Forarig-orousderivationoftheLBEfromthelatticeBoltzmannBGKmodel,see[35,36,38].

Withthenewdistributionfunctionsobtained,themacroscopicquantitiesdensityq(x,t)andmomentumqu(x,t)canbecalculatedateachnodebyXqðx;tÞ¼fjðx;tÞ;ð5Þ

j

ðquÞðx;tÞ¼X

jnjfjðx;tÞ:ð6Þ

Weuseastandard3DlatticeD3Q19whichhas19discreteparticlevelocitiesandcanbewrittenasfollows:8j¼0;><ð0;0;0Þ;

j¼1;2;...;6;nj¼ðÆ1;0;0Þ;ð0;Æ1;0Þ;ð0;0;Æ1Þ;>:ðÆ1;Æ1;0Þ;ðÆ1;0;Æ1Þ;ð0;Æ1;Æ1Þ;j¼7;8;...;18:

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195185

Forisothermal uids,theequilibriumdistributionfunctionfj0(whichisafunctionofqandu)intheD3Q19latticecanbecomputedvia 932ð7Þfj0ðx;tÞ¼qðx;tÞwj1þ3njÁuðx;tÞþðnjÁuðx;tÞÞÀuÁu;22

wherewjistheweight,whichtakesthevalues:

8><1=3;j¼0;

wj¼1=18;j¼1;2;...;6;>:1=36;j¼7;8;...;18:

Weusetheconventionalbounce-backschemetomodeltheno-slipboundarycondition.Weuseacombi-nationofbounce-backandspecularrefectiontomodeltheslipboundarycondition;thatis,whenaparticlevelocitydistributionfunctionfjhitsawall,fjisbouncedbackwithprobabilityq,andisre ectedwithprob-ability1Àq.Anyfjwhichhitsawallalongitsnormaldirectionisbouncedback.There ecteddistributionfunction,fj,goestowardsaneighboringnodewhichis±dxawayfromtheoriginalnode,andupdatesthedistributionfunctionattheneighboringnodealongthedirectionitisre ected.Inoursimulation,boththebounce-backandre ectionareexecutedwhenadistributionfunctionishalfwaybetweenitsoriginalsiteandawall.Otherwise,theorderofaccuracymaysu erneartheboundaries.Exceptformodelingoftheslipboundarycondition,thesinglecomponentLBMusedinoursimulationisthelatticeBKGD3Q19model.ReadersinterestedinLBmethodscansee[31–33,35,36,39,56]andthereferencestherein.Wewanttopointoutthattheconceptsofbounce-backandspecularre ectionmaynothavedirectphysicalanalogsforliquids.Theyareusedhereasanidealizationandsimpli cationofthephysics.Theprobabilitiesofbounce-backandre ectionarearami cationofthecomputation.Theyarenotbaseddirectlyonexper-imentalorphysicalresults.

2.2.Multi-componentlatticeboltzmannmethod

TherecurrentlyexistseveralversionsofthemulticomponentlatticeBoltzmannmethod:theR-Kmodel

[46,47],theS-Cmodel[48–51],Swift[57],He[58],Seta[59],Inamuro[60],Luo[61].TheS-CmodelhasbeentestedinthestaticcasebyHouetal.[53]andNiimura[63].Ithasbeensuccessfullyappliedtosimulatedropletdeformationundershear owina3Dchannel,seeXiandDuncan[62].Hereinourworkitisusedtosimulatemultiphase owwithtwocomponents.Foreach uidcomponentr(r=0,1inourcase),asin-gleparticlevelocitydistributionfunctionfr(x,n,t)isintroduced,whichsolvestheLBGKmodelforthatcomponent

ofrðx;n;tÞofrðx;n;tÞ1þnÁ¼Àrðfrðx;n;tÞÀfrð0Þðx;n;tÞÞ:otoxsð8ÞHeresrandfr(0)aretherelaxationtimeandtheequilibriumdistributionfunctionforcomponentr,respectively.

Afterdiscretizationinparticlevelocityspacenandintimet,wegetthemulticomponentLBE

1rrð0Þðfðx;tÞÀfðx;tÞÞ;ð9Þjjsr

wherefjristhedistributionfunctionforthercomponentalongthedirectionnj.Notethatthediscretizationinnisthesameforeachcomponent.

OneimportantnewfeatureforthemulticomponentlatticeBoltzmannmodelistheintroductionofaninterparticleinteractionpotential,whichisde nedasfjrðxþnj;tþ1Þ¼fjrðx;tÞÀ

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

186L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

Vðx;yÞ¼XX

rr0Grr0ðx;yÞwrðxÞwrðyÞ:0ð10Þ

HeretheGreensfunction,Grr0(x,y),characterizesthenatureoftheinteractionbetweendi erentcompo-nents(attractiveorrepulsiveanditsstrength).Thechoiceofwdeterminestheequationofstateofthesys-temunderstudy.Byselectingdi erentGandw,various uidmixturesandmultiphase owscanbesimulated.Ifonlythenearestneighborinteractionsareconsidered,theGreensfunctionGcanbeputintothefollowingform:

&0;jxÀyj>c;Grr0ðx;yÞ¼grr0;jxÀyj¼c;

wherec=dx/dtisthelatticespeed.Heredxisthespatialwidththendirection,anddtisthetimestep.p along Inourcase,c=0forj=0,c=1forj=1,2,3,4,5,6andc¼2fortheotherdirections.grr0isasymmetricmatrixthatspeci estheinteractionofdi erentcomponentsalongeachdirection.rð0ÞTheequilibriumdistributionfjcanbewrittenas Á3Àrð0Þrrrrrrfjðx;tÞ¼qðx;tÞwj1þ3njÁuðx;tÞþ3njnj:uðx;tÞuðx;tÞÀuðx;tÞÁuðx;tÞ;ð11Þ2

wherewjistheweight,asinthesinglecomponentcase.Themassdensityofcomponentrisde nedbyXrqðx;tÞ¼mrfjrðx;tÞ;ð12Þ

j

wheremristhemolecularmassofcomponentr.Thevelocity,ur,iscomputedvia

dpr

ðx;tÞþsrhrðxÞ;qðx;tÞuðx;tÞ¼qðx;tÞ uðx;tÞþsdtrrrrð13Þ

wheretheaveragevelocityu isde nedby !Xqrðx;tÞXmrXr ¼fðx;tÞnj:uðx;tÞjrrssrrjð14Þ

Heredpr/dtisthenetrateofmomentumchangethatcanbecomputedintermsoftheinteractionpotential

XXXjr0dprrðx;tÞ¼ÀryVðx;yÞ¼ÀwðxÞGrr0wðxþnjÞnj:ð15Þdt0yjr

NotethatheretheGreensfunctiondependsonthedirectionnj.ThisisbecausetheoriginalS-Cmodelwasformulatedona4Dface-centeredhyper-cube(FCHC)lattice.Whenprojectingthe4DFCHClatticeontotheD3Q19lattice,thenearestneighborsinthe4DFCHClatticecorrespondtothenearestandnextnearestneighborsintheD3Q19lattice.

Theforcesh(x)thatweintroducetomodelthehydrophobicwallsareaddedtotheright-handsideoftheequationswhichareusedtocomputetheur.Ourchoiceofhr(x)isasfollows:(index0denotesthe uidinthemodeltosimulatethewaterandindex1the uidtosimulatetheair/watervapor)

h1ðxÞ¼0;

h0ðxÞ¼ð0;g2ðyÞ;g3ðzÞÞ;

g2ðyÞ¼Æg20expðÀy=kÞ;

g3ðzÞ¼Æg30expðÀz=kÞ;

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195187

whereyisthedistanceawayfromthesidewallsalongtheinwardnormaldirection,andzhasasimilarmeaningforthetopandbottomwalls.Thekcanbedeterminedbyspecifyingthedistanceawayfromthewall(y0andz0)wheretheforcediminishesto1%ofthemaximummagnitude(g20andg30)atthewall:0.01g20=g20exp(Ày0/k).Inthepresentsimulation,theparameterswerechosenasfollows:g20=g30=0.2(4·10À3dyn/cm3indimensionalform.WeaddressthischoiceinSection3),y0=30nm,z0=30nm.Thedecaylengthisk=6.5nm

wr¼qr; 0Gj

rr0¼0:2 0¼Gj

0rr0:1!0:20!0:10forj¼0;1;...;6;forj¼7;8;...;18:

ThesechoicesofwandGhavebeenusedintheliterature,inthesimulationofbubblesin uids[49,52,53].Thevaluesofy0andz0werechosentobeconsistentwiththebubbleheightsobservedexperimentallybyTyrellandAttard[22].

Themacroscopicquantitiesareconnectedtodistributionfunctionsbythefollowingrelations:Xqðx;tÞ¼qrðx;tÞ;ð16Þ

r

ðquÞðx;tÞ¼X

rmrXjfjrnj1Xdprðx;tÞ:þ2rdtð17Þ

Thedimensionlessviscosityofthesystemisde nedbyP2qrsr

rÀ1:m¼6ð18Þ

3.Simulationresults

3.1.SinglecomponentlatticeBoltzmannsimulation

Inthe rstpartofourwork,wecloselyfollowedtheparametersintheexperiment[1],exceptthatthelengthofthechannelwasdecreasedfrom8.25cmintheexperimentto600lminthesimulation.Inthesimulation,thelengthofthechannel(600lm)wastwicethewidthofthechannel(300lm).Theshorterchannellengthisjusti edbecauseaperiodicboundaryconditionisusedalongthechanneldirection.SeeFig.1foradiagramofthe3Dmicrochannelusedinthesimulation.Themicrochannellengthdirectionisdenotedasthexdirection(600lminthesimulation),thewidthastheydirection(300lminthesim-ulation),andthedepthasthezdirection(30lminthesimulation).Inallthe gurespresentedbelow,thevelocitypro leplottedwastakenonthecross-sectionx=300lmataplanewithz=15lmnormaltothecross-sectionasafunctionofy,orataplanewithy=150lmnormaltothecross-sectionasafunc-tionofz,dependingonthecontext.Thesimulationpresentedhereusesaspatialdiscretizationwithreso-lution400·200·20(x,y,zdirections,respectively).

Weperformedsimulationsonaseriesofgraduallyre nedgrids.Thenumberofnodesinthezdirectionwas10,15,20,25,30,35.ThelatticeBoltzmannsimulationsondi erentgridswereperformedaccordingtothepaper[54].Wefoundthatthe uidslippercentagewasconvergentasthegridwasre ned.Wealsocom-putedthequantityiu2hÀu4hiL2/iuhÀu2hiL2(wherehisthegridspacing)onthreesuccessivelyre nedgrids

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

188L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

withre nementratio2:100·50·5,200·100·10and400·200·20.Theratiowas3.89.Thisindicatesthatthenumericalmethodisofsecondorderinspace,asclaimedintheliterature.Duetocomputationallimitations,wedidnotcheckthison nergrids.Instead,wecomparedthevelocity eldpresentedinourpapertothosecomputedfromaseriesof nergrids(500·250·25,600·300·30,700·350·35),andfoundthattheyarealmostindistinguishable.

ThesimulationwasperformedonthePC-clusteroftheComputerScienceDepartmentatUCSB.Theclusterhas33dual-processor(IntelXeon)nodesthatareconnectedby1GBcopper.Eachnodehasamem-oryof3GBandeachprocessorhasaspeedof2.6GHz.ThelatticeBoltzmannmodelsweusedwerepar-allelizedbydomaindecompositionandMPI.See[24]fordetails.Thesimulationwasrununtilthe owreachedsteadystate(approximately500,000steps).Theconventionalbounce-backschemeinLBMwasap-pliedtomodeltheno-slipboundarycondition,whileacombinationofbounce-backandre ectionwasem-ployedtosimulatetheslipboundarycondition.

Intheno-slipcase,ournumericalsolutionmatchesverywelltheexactsolutionofStokes owassumingano-slipboundarycondition[26],andalsoagreeswellwiththeexperimentalresult.Fig.2showstheveloc-itypro lesinthecaseofhydrophilicwalls.Thepro leistakenatthecross-sectionx=300lmwiththezcoordinateequalto15lm.Thex-axisisthenormalizedvelocity,andthey-axisisthedistancefromthewall(unit:micron).Thesquaresaretheexperimentaldata,thedashedlineistheexactsolution,andthesolidlineistheLBMsimulationresult.Wecanseethatoursimulationresultisalmostindistinguishablefromtheexactsolutionandmatcheswellwiththeexperimentaldata.

Intheslipscenario,ournumericalvelocitypro leagreeswellwiththatoftheexperiment.Aslipofabout10%onthewallwasattainedbyassigningtheprobabilityofbounce-backto0.03andofre ectionto0.97whenthevelocitydistributionfunctionhitsthewall.SeeFig.3forvelocitypro lesinthecaseofhydro-phobicwalls.Thepro leistakenatthecross-sectionx=300lmwiththezcoordinateequalto15lm.Thex-axisisthenormalizedvelocityandthey-axisisthepositionfromthewall.Thetrianglesrepresentexperimentaldata.ThesolidlineistheLBMsimulationresult.Wecanseethatournumericalresultagreesreasonablywellwiththeexperimentaldata.

InFig.4,bothvelocitypro lesalongtheyandzdirectionswereplottedtogether.Thepro lesaretakenatthecross-sectionx=300lmwiththezcoordinateequalto15lmasafunctionofy,andwiththey

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195189

Fig.2.Velocitypro lesinthecaseofhydrophilicwalls.Thepro leistakenatthecross-sectionx=300lmwiththezcoordinateequal15lm.Thex-axisisthenormalizedvelocityandthey-axisisthedistancefromthewall(unit:micron).Thesquaresaretheexperimentaldata,thedashedlineistheexactsolution,andthesolidlineistheLBMsimulationresult.

Fig.3.Velocitypro lesinthecaseofhydrophobicwalls.Thepro leistakenatthecross-sectionx=300lmwiththezcoordinateequalto15lm.Thex-axisisthenormalizedvelocityandthey-axisisthepositionfromthewall.Thetrianglesrepresentexperimentaldata.ThesolidlineistheLBMsimulation

result.

coordinateequalto150lmasafunctionofz.Thex-axisisthenormalizedvelocityandthey-axisisthedistancefromthewalls,normalizedbythedepthandwidthofthechannel,respectively.Thesolidlineisthepro lealongtheydirection,andthecurveplottedbytrianglesisthepro lealongthezdirection.Wecanseethatthe uidslipinthezdirection(channeldepth)isslightlylargerthantheslipintheydirection(chan-nelwidth).Experimentaldataarenotavailableforthevelocitypro lealongthedepthdirection.

Fig.5showsthesliplengthasafunctionoflocationalongthewidthdirectionandthedepthdirection.Fig.5(a)plots uidsliplengthatthetoporbottomwallsasafunctionofdistancefromthesidewallalongthewidthdirection,andFig.5(b)plots uidsliplengthatthesidewallsasafunctionofdistancefromthebottomwallalongthedepthdirection.Weseethatthevariationofsliplengthalongthesidewalls(sepa-ratedby300lm)issigni cantlydi erentfromthevariationofsliplengthalongthebottomandtop

walls

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

190L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

Position on bottom channel wall (microns)25020015010050

011.21.4

Slip length (microns)Position on side channel wall (microns)Slip length (y-direction)300Slip length (z-direction)30252015105(c)(a)011.21.4(b)Slip length (microns)

Fig.5.(a)and(b)depicthowthe uidsliplengthvariesalongtheperimeterofthechannelatstreamwisepositionofx=300lm.(a)Variationofsliplengthasafunctionofyalongthetoporbottomwall.(b)Variationofsliplengthasafunctionofzalongthesidechannelwalls.(c)Measurementsampleplaneandthelocationsofsliplengthplottedin(a)and(b).

(separatedby30lm).However,themagnitudesaresimilar,rangingbetween1.1and1.4lm.Fig.5(c)showsthemeasurementsampleplaneandthelocationsofsliplengthplottedinFigs.5(a)and(b).

3.2.Multi-componentlatticeBoltzmannsimulation

Inthesecondpartofourwork,weinvestigatedapossiblegeneratingmechanismforapparent uidslip

[2],viathemulti-componentlatticeBoltzmannmethod(theS-Cmodel).Weperformedthesimulationona0.1·1·2lm3microchannel.Thegridspacingis5nm.Thenon-dimensionalhydrophobicwallforceusedinthesimulationis0.2,correspondingtoaphysicalforceof4·10À3dyn/cm3withadecaylengthof6.5

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195191

nm,aswasspeci edinSection2.Theappropriatemagnitudeofthisforceisnotwellde ned.However,Vinogradova[21]modeledattractivehydrophobicinteractionsasadecayingexponentialwithamagnitudeof1dynandadecaylengthofbetween5and15nm.Forthecurrentsimulation,theforcefunctionwaschosensothatthesimulationresultswouldbeconsistentwithexperimentalobservations.Whilethedecaylength,k=6.5nm,isconsistentwiththevaluesofVinogradova[21],themagnitudeofthehydrophobicforce,4·10À3dyn,issigni cantlylower.Thedi erencemayarisefrompossiblenon-uniformitiesinthehydrophobicOTScoatingsinthemicrochannels.Thisrepulsivehydrophobicforcecausesthedensityofthesynthetic uidusedtosimulatewaterinthemulti-componentlatticeBoltzmannsimulationtobegreaterthan1.Werescaledthedensityto1forthe uidusedtomodelwaterbythemaximumdensityinthesim-ulationresult(about1.07).

Weperformedsimulationsonaseriesofgraduallyre nedgrids.Thenumberofnodesinthezdirectionwas10,15,20,25,30.Wefoundthatthe uidslippercentagewasconvergentasthegridwasre ned.

Fig.6showsthe uiddensitiesasafunctionofdistanceawayfromthesidewallatthecross-sectionx=1lmandz=50nm.Thex-axisisthedensityandthey-axisisthedistancefromthesidewall.Fig.6(a)showsthedensityofthe uidusedtosimulatewaterinthemodelalongtheydirection(inthemiddleofthezdirection)onacross-sectioninthemiddleofthechannel(xdirection).Fig.6(b)showsthedensityofthe uidusedtosimulatewatervapor/air.Wecanseethatthedensityofwaterisdecreasedandthatofwatervapor/airisincreasedclosetothewalls.Fig.7givesadetailedpictureofthedensitychangeclosetothewall.Sakuraietal.[20]havealsoobservedadrasticdecreaseofthewatermoleculenumberdensityatamonolayer–waterinterfacefromthesimulationresultsofwaterbetweenhydrophobicsurfaces,viamoleculardynamics.Ourresultsareconsistentwiththeirs.

Fig.8showsthenormalizedstreamwisevelocitypro leandalocalblowupalongtheydirectionatcross-sectionx=1lmforz=50nm.Thex-axisisthenormalizedvelocity,andthey-axisisthepositionfromthesidewall(unit:micron).Thesolidline(in(a)and(b))isthevelocitypro lewhennowallforcesarepresent.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

192L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

Thedottedline(inpart(a)),orthedashedline(inpart(b))isthecasewherewallforcesareintroduced.Incontrasttotheformercase,thelatterresultsinapparentslipatthewalls.(SeeFig.8(b)forthelocalblowupnearthesidewall.)WecanseefromFigs.6–8thatintheregionveryclosetothewalls,thewaterdensitydecreasesandthewatervapor/airdensityrises.Thisenablesthe uidsliponthewalls(approximately9%offreestreamvelocity)comparedtothesolidlinesinFig.8,whichillustratethecasewherenohydrophobicwallforceswereapplied.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195193

4.Summaryanddiscussion

WiththesinglephaselatticeBoltzmannmethod(D3Q19model),wesimulatedthe owofwaterina3Dmicrochannelwithhydrophilic/hydrophobicwalls.Theclassicbounce-backschemewasusedtomodelthehydrophilicwalls,whileacombinationofbounce-backandspecularre ectionwasappliedtomodelthepartialslipboundaryconditionatthehydrophobicwalls.Goodquantitativeagreementwasobservedbe-tweenthesimulationsandpreviousexperimentalresults.Inthecaseofhydrophilicwalls,thesimulationresultagreesalmostexactlywiththeanalyticsolution.Inthecaseofhydrophobicwalls,a10%slipwasattainedbyassigningtheprobabilityofbounce-backto0.03andtheprobabilityofre ectionto0.97.ThevalueofqisconsistentwithSucciÕswork[55].Thisseemstoindicatethatpartial uidslipgeneratedbyhydrophobicitymaybemodeledbyacombinationofbounce-backandspecularre ection.However,itremainstobefurtherveri edwhetherthecombinationschemecanaccuratelycapturetheslipmotioncausedbyhydrophobicity.See[55]fordetails.

WiththemultiphaselatticeBoltzmannmethod(theS-Cmodel),weinvestigatedapossiblemechanismfor uidslip.Duetocomputationallimitations,thecorrespondingphysicalsizeofthesimulationdomainwas0.1·1·2lm,whereastheexperimentalresultswereobtainedinamicrochannelwithacross-sectionof30·300lm.Thehydrophobicwallsweremodeledbyapplyinganexponentiallydecayingforceof4·10À3dynwithadecaylength6.5nmfromthewall,whichisconsistentwiththeworkofVinogradona

[21].Thisforcerepelsthewatermolecules,buthasnoe ectontheair/watervapormolecules.Theforceproducesaslipofapproximately9%ofthemainstreamvelocity,whichcorrespondstotheexperimentall-PIVresults.Itindicatesthatthepresenceofadepletedwaterlayer(lowdensityregion)nearthehydro-phobicsurfacemayproducetheapparent uidslipobservedexperimentally.

Acknowledgment

WethankthefollowingpeoplefortheirusefulconversationsanddiscussionsofthelatticeBoltzmannmethod:ShulinHou,ShiyiChen,HudongChen,NicosMartys,XiaoboNie,andLishiLuo.

References

[1]D.C.Tretheway,C.D.Meinhart,Apparent uidslipathydrophobicmicrochannelwalls,Phys.Fluids14(3)(2002)L9.

[2]D.C.Tretheway,C.D.Meinhart,Ageneratingmechanismforapparent uidslipinhydrophobicmicrochannels,Phys.Fluids16

(5)(2004)1509.

[3]C.H.Choi,K.J.A.Westin,K.S.Breuer,Apparentslip owsinhydrophilicandhydrophobicmicrochannels(submitted).

[4]D.Lumma,A.Best,A.Gansen,F.Feuillebois,J.O.Radler,O.I.Vinogradova,Flowpro lenearawallmeasuredbydouble-focus uorescencecross-correlation,Phys.Rev.E67(2003)056313.

[5]R.G.Horn,O.I.Vinogradova,M.E.Mackay,N.Phan-Thien,Hydrodynamicslippageinferredfromthin lmdrainagemeasurementsinasolutionofnonadsorbingpolymer,J.Chem.Phys.112(14)(2000).

[6]K.Watanabe,Yanuar,H.Mizunuma,SlipofNewtonian uidsatsolidboundary,JSMEInt.J.Ser.B41(1998)525.

[7]K.Watanabe,Yanuar,H.Udagawa,DragreductionofNewtonian uidinacircularpipewithahighlywater-repellantwall,J.FluidMech.381(1999)225.

[8]E.Ruckenstein,P.Rajora,Ontheno-slipboundaryconditionofhydrodynamics,J.ColloidInterfaceSci.96(1983)488.

[9]J.Barrat,L.Bocquet,Largeslipe ectatanonwetting uid–solidinterface,Phys.Rev.Lett.82(1999)4671.

[10]N.Churaev,V.Sobolev,A.Somov,Slippageofliquidsoverlyophobicsolidsurface,J.ColloidInterfaceSci.97(1984)574.

[11]Y.Zhu,S.Granick,Rate-dependentslipofNewtonianliquidatsmoothsurfaces,Phys.Rev.Lett.87(2001)096105.

[12]R.Pit,H.Hervet,L.Leger,Directexperimentalevidenceofslipinhexadecane:solidinterfaces,Phys.Rev.Lett.85(2000)980.

[13]P.A.Thompson,S.M.Troian,Ageneralboundaryconditionforliquid owatsolidsurfaces,Nature389(6649)(1997)360–362.

[14]O.I.Vinogradova,Slippageofwateroverhydrophobicsurfaces,Int.J.Miner.Process.56(1999)31–60.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

194L.Zhuetal./JournalofComputationalPhysics202(2005)181–195

[15]L.Mainbaum,D.Chandler,Acoarse-grainedmodelofwatercon nedinahydrophobictube,J.Phys.Chem.B107(2003)1189–

1193.

[16]K.Lum,D.Chandler,J.D.Weeks,Hydrophobicityatsmallandlargelengthscales,J.Phys.Chem.B103(1999)4570–4577.

[17]D.M.Huang,D.Chandler,Thehydrophobice ectandthein uenceofsolute–solventattractions,J.Phys.Chem.B106(2002)

2047–2053.

[18]N.F.Bunkin,O.A.Kiseleva,A.V.Lobeyev,T.G.Movchan,E ectofsaltsanddissolvedgasonopticalcavitationnear

hydrophobicandhydrophilicsurfaces,Langmuir13(1997)3024–3028.

[19]D.Chandler,Twofacesofwater,Nature417(2002)491.

[20]M.Sakurai,H.Tamagawa,K.Ariga,T.Kunitake,Y.Inoue,Moleculardynamicssimulationofwaterbetweenhydrophobic

surfaces.Implicationforthelong-rangehydrophobicforce,Chem.Phys.Lett.289(1998)567.

[21]O.I.Vinogradova,Possibleimplicationsofhydrophobicslippageonthedynamicmeasurementsofhydrophobicforces,J.Phys.:

Condens.Matter8(1996)9491.

[22]J.Tyrell,P.Attard,Imagesofnanobubblesonhydrophobicsurfacesandtheirinteractions,Phys.Rev.Lett.87(2001)176104.

[23]D.Schwendel,T.Hayashi,R.Dahint,A.Pertsin,M.Grunze,R.Steitz,F.Schreiber,Interactionofwaterwithself-assembled

monolayers:neutronre ectivitymeasurementsofthewaterdensityintheinterfaceregion,Langmuir19(2003)2284–2293.

[24]L.Zhu,J.Zhou,L.Petzold,T.Yang,Parallelsimulationof uidslipathydrophobicmicrochannelwallsbythemulti-component

latticeBoltzmannmethod,in:SIAMConferenceonParallelProcessingforScienti cComputing,SanFrancisco,CA,February25–27,2004.

[25]D.C.Tretheway,L.Zhu,L.R.Petzold,C.D.Meinhart,Examinationoftheslipboundaryconditionbyl-PIVandlattice

Boltzmannsimulation,in:2002ASMEInternationalMechanicalEngineeringCongress&Exposition,NewOrleans,Louisiana,November,2002.

[26]W.White,ViscousFluidFlow,McGraw-Hill,NewYork,1974.

[27]G.E.Karniadakis,A.Beskok,Micro- ows–FundamentalsandSimulation,Springer,NewYork,2002.

[28]Y.H.Qian,LatticegasandlatticekinetictheoryappliedtotheNavier–Stokesequations,Ph.D.Thesis,UniversityPierreetMarie

Curie,Paris,1990.

[29]S.Y.Chen,H.D.Chen,D.Martinez,W.Matthaeus,LatticeBoltzmannmodelforsimulationofmagnetohydrodynamics,Phys.

Rev.Lett.67(1991)3776.

[30]P.L.Bhatnagar,E.P.Gross,M.Krook,Amodelforcollisionprocessesingases,I:smallamplitudeprocessinchargedandneutral

one-componentsystem,Phys.Rev.94(1954)511.

[31]D.H.Rothman,S.Zaleski,Latticegasmodelsofphaseseparation:interfacephase,transitionsandmultiphase ow,Rev.Mod.

Phys.66(1994)1417.

[32]S.Y.Chen,G.D.Doolen,LatticeBoltzmannmethodfor uid ows,Annu.Rev.FluidMech.30(1998)329.

[33]L.S.Luo,Uni edtheoryofthelatticeBoltzmannmodelsfornonidealgases,Phys.Rev.Lett.81(1998)1618.

[34]L.S.Luo,Thefutureoflattice-gasandlatticeBoltzmannmethods,in:ICASE/LaRC/NSF/AROWorkshoponComputational

Aerosciencesinthe21stCenturyHampton,Virginia,April22–24,1998.

[35]D.A.Wolf-Gladrow,Lattice-gasCellularAutomataandLatticeBoltzmannModels–AnIntroduction,Springer,Berlin,2000.

[36]X.He,L.S.Luo,TheoryoflatticeBoltzmannmethod:fromtheBoltzmannequationtothelatticeBoltzmannequation,Phys.

Rev.E56(1997)6811.

[37]X.He,Q.Zou,L.Luo,M.Dembo,Analyticsolutionsofsimple owsandanalysisofnonslipboundaryconditionsforthelattice

BoltzmannBGKmodel,J.Stat.Phys.87(1/2)(1997).

[38]X.He,L.Luo,AprioriderivationofthelatticeBoltzmannequation,Phys.Rev.E55(6)(1997).

[39]S.Hou,LatticeBoltzmannmethodforincompressibleviscous ow,Ph.D.Thesis,KansasStateUniversity,1995.

[40]X.Nie,G.D.Doolen,S.Y.Chen,LatticeBoltzmannsimulationsof uid owsinMEMS,J.Stat.Phys.107(1/2)(2002).

[41]C.Y.Lim,C.Shu,X.D.Niu,Y.T.Chew,ApplicationoflatticeBoltzmannmethodtosimulatemicrochannel ows,Phys.Fluids

14(7)(2002)2299.

[42]J.C.Maxwell,Philos.Trans.R.Soc.Lond.A170(1867)231.

[43]vallee,J.P.Boon,A.Noullez,Boundariesinlatticegas ows,PhysicaD47(1991)233.

[44]G.P.Bird,MolecularGasDynamicsandtheDirectSimulationofGasFlows,OxfordSciencePublications,1994.

[45]J.G.Zhou,Anelastic-collisionschemeforlatticeBoltzmannmethods,Int.J.Mod.Phys.C12(3)(2001)387.

[46]D.H.Rothman,J.M.Keller,Immisciblecellular-automaton uids,J.Stat.Phys.52(1988)1119.

[47]A.K.Gunstensen,D.H.Rothman,S.Zaleski,G.Zanetti,LatticeBoltzmannmodelofimmiscible uids,Phys.Rev.A43(1991)

4320.

[48]D.Grunau,S.Y.Chen,K.Eggert,AlatticeBoltzmannmodelformultiphase uid ows,Phys.FluidsA5(1993)2557.

[49]X.Shan,H.Chen,LatticeBoltzmannmodelforsimulating owswithmultiplephasesandcomponents,Phys.Rev.E47(3)(1993)

1815.

[50]X.Shan,H.Chen,Simulationofnonidealgasesandliquid–gasphasetransitionsbythelatticeBoltzmannequation,Phys.Rev.E

49(1994)2941.

Fluid slip along hydrophobic microchannel walls has been observed experimentally by Tretheway and Meinhart [Phys. Fluids, 14 (3) (2002) L9]. In this paper, we show how fluid slip can be modeled by the lattice Boltzmann method and investigate a proposed mec

L.Zhuetal./JournalofComputationalPhysics202(2005)181–195195

[51]X.Shan,G.D.Doolen,MulticomponentlatticeBoltzmannmodelwithinterparticleinteraction,J.Stat.Phys.81(1995)379.

[52]N.S.Martys,H.Chen,Simulationofmulticomponent uidsincomplexthree-dimensionalgeometriesbythelatticeBoltzmann

method,Phys.Rev.E53(1)(1996)743.

[53]S.Hou,X.Shan,Q.Zou,G.D.Doolen,W.E.Soll,EvaluationoftwolatticeBoltzmannmodelsformultiphase ows,put.

Phys.138(1997)695.

[54]J.Sterling,S.Chen,StabilityanalysisoflatticeBoltzmannMethods,put.Phys.123(1996)196.

[55]S.Succi,Mesoscopicmodelingofslipmotionat uidsolidinterfaceswithheterogeneouscatalysis,Phys.Rev.Lett.89(6)(2002)5.

[56]S.Succi,TheLatticeBoltzmannEquation,OxfordUniversityPress,Oxford,2001.

[57]M.R.Swift,W.R.Osborn,J.M.Yeomans,LatticeBoltzmannsimulationofnonideal uids,Phys.Rev.Lett.75(1995)830–833.

[58]X.He,S.Chen,R.Zhang,AlatticeBoltzmannschemeforincompressiblemultiphase owanditsapplicationinsimulationof

Rayleigh–Taylorinstability,put.Phys.152(1999)642–663.

[59]T.Seta,K.Kono,S.Chen,LatticeBoltzmannmethodfortwo-phase ows,Int.J.Mod.Phys.B17(1&2)(2003)169–172.

[60]T.Inamuro,R.Tomita,F.Ogino,LatticeBoltzmannsimulationsofdropdeformationandbreakupinshear ows,Int.J.Mod.

Phys.B(2002).

[61]L.Luo,S.Girimaji,LatticeBoltzmannmodelforbinarymixtures,Phys.Rev.E66(2002)035301.

[62]H.Xi,C.Duncan,LatticeBoltzmannsimulationofthree-dimensionalsingledropletdeformationandbreakupundersimpleshear

ow,Phys.Rev.E59(3)(1999).

[63]H.Niimura,Veri cationofmulti-componentlatticeBoltzmannmethod,Int.J.Mod.Phys.B17(1&2)(2003).

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth相关文章:

基于Simulink的数字通信系统仿真— 采用 2PSK调制技术

基于Matlab_Simulink和GUI的运动控制系统虚拟实验平台设计

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth

Violent Fluid-Structure Interaction simulations using a coupled SPH-FEM method

221381
领取福利

微信扫码领取福利

Simulation of fluid slip at 3D hydrophobic microchannel walls by the lattice Boltzmann meth

微信扫码分享https://www.jinbitou.cn/tougao/142108.html